# Rastreador Eletrônico Integrado com Dinâmica Veicular (RADIM)

Resumo do projeto RADIM em parceria com Prof. Thiago Ragozo Contim.

Faculdade de Tecnologia de Sorocaba

# Introdução

Atualmente para um automóvel ser vendido no mercado é preciso a realização de inúmeros testes em pistas de prova e simuladores.

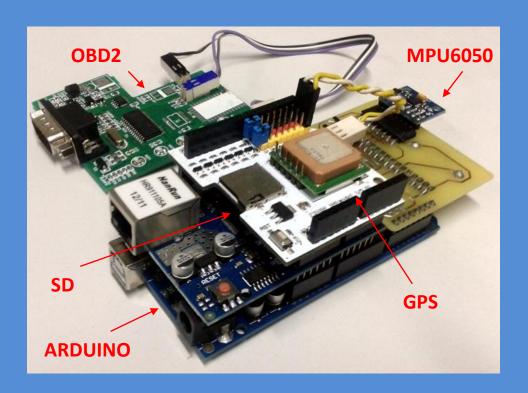
Esses testes têm como objetivo identificar possíveis falhas de projeto do veículo ou problemas na execução da fabrica.

Assim para verificar o funcionamento do automóvel é necessário realizar medições de um grande número de variáveis da resposta dinâmica do veículo.

Dentre as principais variáveis medidas podemos citar: as acelerações lineares, as acelerações angulares, a velocidade, a rotação do motor, a posição geográfica entre outras.

### Introdução

A motivação dessa pesquisa é a inexistência de sistemas nacionais para a aquisição das variáveis da dinâmica veicular e o custo elevado dos sistemas importados.


Também através desse sistema, é possível a validação de peças e simuladores automotivos.

Como resultados da pesquisa foram elaborados um hardware para a aquisição de dados do automóvel e um software para o processamento dos dados.

Com esse software podemos gerar gráficos e dados georreferenciados da resposta dinâmica do automóvel

# Equipamentos usados.

- Plataforma de hardware Arduino Mega 2560;
- Módulo de GPS Fastrax UP501;
- Módulo Ethernet Shield com gravador de cartão SD para salvar as variáveis;
- Acelerômetro e Giroscópio de três eixos MPU6050;
- Interface de comunicação serial para o protocolo OBD2;
- Veículo GOL G5 para a realização dos testes.



# Variáveis que são utilizadas na resposta dinâmica do veículo

**Acelerações lineares em três eixos**: o sistema realiza a medida da aceleração longitudinal (eixo x), aceleração lateral (eixo y) e aceleração vertical (eixo z). A medida é realizada através de um acelerômetro de três eixos.

Acelerações angulares em três eixos: o sistema realiza a medida das acelerações angulares em relação aos três eixos (roll, pitch e yaw). A medida é realizada por meio de um giroscópio de três eixos.

**Posição geográfica**: corresponde a uma coordenada de latitude e longitude obtida através de um GPS.

**Velocidade por GPS**: trata-se da velocidade do veículo obtida através da leitura do GPS.

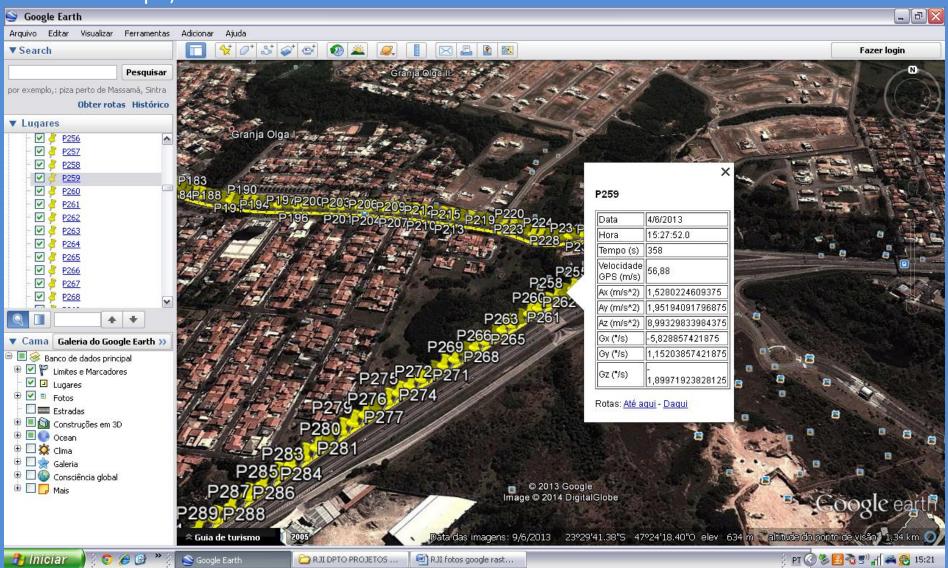
**Velocidade por OBD2**: consiste na velocidade do veículo obtida através da interface OBD2 do veículo (protocolo de diagnose de bordo). Essa velocidade é obtida diretamente do sistema de gerenciamento do motor do veículo.

**Rotação do motor por OBD2**: consiste na rotação do motor do veículo obtida através da interface OBD2 do veículo (protocolo de diagnose de bordo). Essa velocidade é obtida diretamente do sistema de gerenciamento do motor do veículo.


# Teste de estabilidade na coleta de dados e instalação no veículo

Foram realizados vários testes de coleta de dados com o veículo rodando na cidade de Sorocaba e rodovia Raposo Tavares, comprovando a eficiência do sistema.




#### Teste em percurso misto cidade e rodovia.

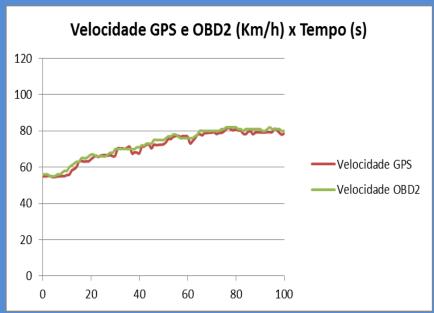
Tela de controle de aquisição de dados dinâmicos mostrando os pontos de coleta e o percurso em tempo real é exibida abaixo. Local: Sorocaba, SP.

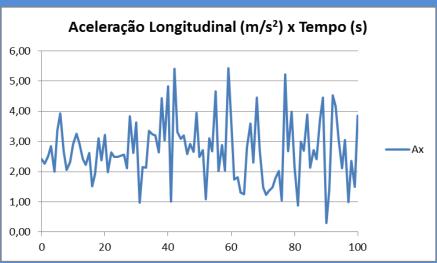


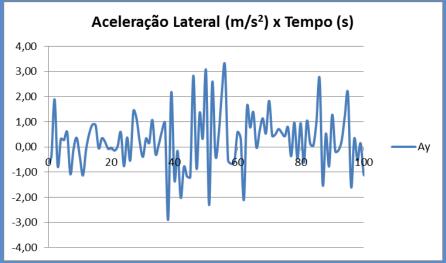
## Teste em percurso misto cidade e rodovia.

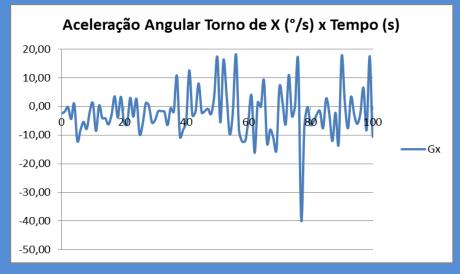
Tela mostrando especificamente os dados dinâmicos do veículo na posição número 259; velocidade; acelerações angulares e lineares nos três eixos, tempo, data e hora local




# Teste em percurso misto cidade e rodovia.

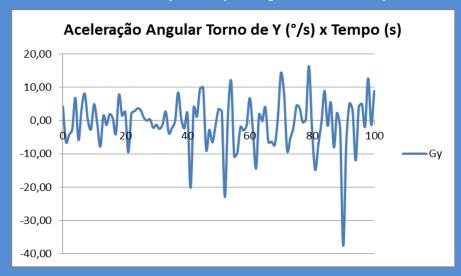

Tela exibindo o percurso marcado pelo GPS e monitorado pela rastreador em tempo real, em trajeto na cidade de Sorocaba, SP.

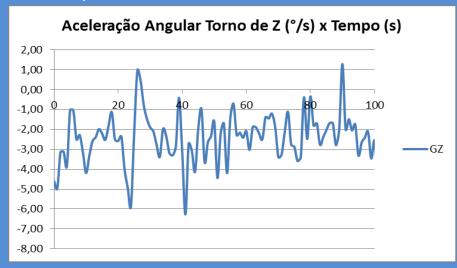


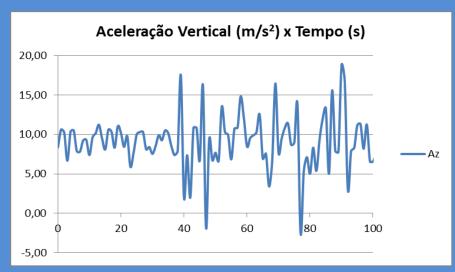


#### Resumo dos dados coletados.

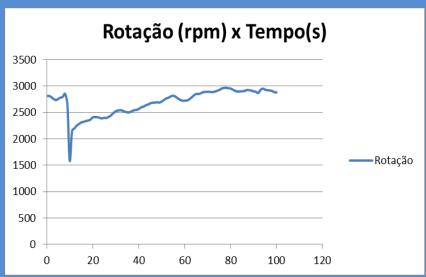
Os gráficos abaixo mostram parte dos dados dinâmicos coletados e processados.







#### Resumo dos dados coletados.

Os gráficos abaixo mostram parte dos dados dinâmicos coletados em função do tempo e posição sendo posteriormente processados no simulador veicular.









#### Aplicações para o rastreador em uso comercial.

As aplicações para o rastreador podem ser em:

- Campo de provas para veículos onde são necessários os dados dinâmicos em tempo real de velocidade, rotação e temperatura do motor, rolamento da carroceria, acelerações em X-Y-Z, posição georreferenciada, tempo e distância percorridos, acelerações angulares exatas entre 35 outros dados disponíveis.
- Frotas de veículos (ônibus, caminhões e carros) para otimização do tempo de viagem e consumo do combustível em função do trajeto percorrido e do modo de condução do motorista.
- Oficinas mecânicas para o monitoramento e registro de falhas mecânicas / elétricas de difícil detecção causada por agentes externos tais como interferência magnética, mau uso do veículo pelo condutor entre outros.
- Detalhamento do desempenho do veículo em função de variações de carga, tipo de pavimento, temperatura ambiente elevada, combustível usado entre outros.